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This paper is devoted to the study of nonlinear vibrations of a finite 

volume of liquid. However, this work has a number of shortcomings, and 

therefore, the author deemed it unsuitable for publication for a long 

time. 

Thus, it should be noted that the results are obtained in a formal 

manner, the convergence of the procedure is not proved, and the computa- 

tions involved in the application of the procedure are very difficult. 

It was not clear whether these results could be extended to the case 

of vibrations of a body filled with a liquid having a free surface, since 

a completeness theorem of the principal oscillations of such a body was 

not available. 

Inasmuch as in nonlinear vibrations the amplitude approacqes its 

limiting value very rapidly and the waves disintegrate, it seemed that 

in practice one needed either a linear theory or a theory taking into 

account the energy dissipation in wave disintegration. 

Until the present time it was not possible to substantiate the proce- 

dure. Nevertheless. the following circumstances, shall we say, excuse the 

present publication of the theory: 

1. The application of high speed computers permits of carrying out the 

required calculations immediately with no special effort, especially since 

in recent years effective numerical methods for solving the pertinent 
boundary value problems have been developed. 

2. The question of completeness of the principal vibrations of a body 

with a fluid is completely settled, and the extension of the developed 

theory to the case of vibrations of a body with a fluid having a free 
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surface does not present any substantial difficulties. 

3. It is in principle impossible to conduct an analysis of resonance 

phenomena in a liquid within the linear theory. At the present time, how- 

ever, this problem has become a subject of practical interest. 

1. Free Vibrations of the Liquid. 1’. The problem reduces to 

the determination of the function + which is harmonic in the region r 

(see Fig. 1, where the symbols are introduced), bounded by a rigid sur- 

face and a free boundary t = <(x,y, t 1 and satisfying the conditions 

@ 0 -_ = 
an 

on 1 

;;- + gC + + (v’F)2 = 0 for 2 = C 

where the function c is determined from the kinematic relation 

(l-1) 

(1.2) 

(1.3) 

Denote by A,, and $,,(n, y) the characteristic numbers and values of the 

integral equation 

q@,y)=h\q2,y,O; “‘,y’,W+(s’,y’)ds (1.4) 
s 

where H is the Green’s function of the Neumann problem for the region r ‘, 

bounded by the surface Z and the plane z = 0. 

z-t t” 
I’ 

S e X z c 

Fig. 1. 

The following result is found to hold [ 4 1. Let +,* and [,,* be the 

velocity potential and the free boundary of the n-th free vibration mode 

of infinitesimally small amplitude and let 

C,’ = qn (2, y) sin ant 

Then 

Here 
‘PO- n- %@)n (z, y, 2) co.9 M (1.5) 

i.e. 

%&@, y,z) = ~W’y,~;~‘,y’,O)+n(~‘, Y’)dS 
s 
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The frequencies of natural vibrations us and the numbers X, are 

related by 

2: Let c be some parameter, and let 

Introduce a new independent variable 

t=n* 
-7” >-: ___._ 

1 + 33,P 
(1.8) 

where hn are constants to be determined. 

Substituting the series (1.7) into conditions (1.2) and (1.3) and 

transforming to the new variable the following system of equations for 

the determination of the unknown functions #J, and 6, is obtained: 

(1.10) 

(1.10) 

The functions A. and B. can be easily computed. The symbol ( )O indi- 

cates that the fun&ion ii to be evaluated at z = 0. 

3: Zero approximation. Taking the partial derivative with respect to 

r of the first of the equations of system (Lo? and using the first of 

the conditions (l.lO), we get 
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Then 

$n(Z, y,O)=\W, Y,O,~‘,Y’,O) ($>,ds 
s 

i.e. 

Thus the following equation is obtained for the function fnO: 

By virtue of the arbitrariness of the initial time reading the 

solution of this system having a period of 2s is*: 

fn0=0 for ng,?z, fmg=CCOST 

Let c = ag/u.; then 

863 

(1.12) 

unique 

(1*.13) 

Using the first of equations (1.10) and equation (1.12) the shape of 

the wave surface is found: 

Co = a+, sin7 (1.14) 

Here a is an arbitrary constant. 

ST First Approximation. Differentiating the second of the equations 

of system (1.9), replacing a<,/dr by its value from the second equation 

of system (l.lO), and noting the values of r0 and q$, at z = 0 

'$$-+-$-g?8F = -$gucos V& + a"sin 2~F,(~)(z, y) 
lx 

Here F,(* )(x, y) is an already known function. 'lhe solution is to be 

found in the form 

If one assumes that 

V) (5, .y) = 2 kJ2$Jn 

then the following system arises for the determination of fnl: 

* It is assumed that an2/cra2 is not an integer when n f m. 
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It is necessary and sufficient for the existence of a periodic solu- 
tion of the system (1.15) that h, = 0. ‘Ihe amplitude a may be arbitrary; 
without loss of generality it can be put equal to unity. 

when frill are determined, then #i and [I can be computed inraediately. 

5: In order to determine the first correction to the frequency h,, 
the second approximation should be studied. Repeating the same reasoning 

the function q$ at as before one arrives at the following condition for 
z = 0: 

@‘Pa 
27-f g cos T& + F,(‘)bcos T 

Let 

+ F2@) cos 3~ 

‘pz = 2 fd#h Facl) = 2 bk2(l)&, Fac3) = 2 bka(g$ 

Ihe following equations are obtained for the functions fn2(t) 

f,,z’ + e$ fnz = &2(l) cos T + bn2(3) cos 3’~ (n#m) 

fm2* + fm2 = (- -2 &? + b,,(“) COS T + b,$) cos % 

It is necessary and sufficient for the existence of 
of this system that 

b,% 
h, zz m 

g 

(n = m) 

periodic solutions 

(1.16) 

If equation (1.16) holds, then the required solution is easily found. 

6: It can be easily shown by induction that it is possible to calculate 
any arbitrary approximation. Ihe condition for the function +k will be: 

for k odd 

k+1 
- “g C,OS 79 m + 2 Fk(‘) (5, y) sin ST (S = 2, 4,6, . . .) 

m 9=2 

for k even 

= - $ g cos 7 +,, + ‘$ Fk(') (z, y) cos SC (s = 3, 5, 7) 

tl=l 

Fkc3) = -J bnk@)& z 
‘lbe following system of equations is obtained for the functions fnk: 
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Here the sine corresponds to the odd and the cosine to the even values 

of k (at the same time the index s also takes on even or odd values, 
respectively). 

If follows that if k is odd, then necessarily h = 0, if k is even, then 

hk _ bkm(l) g (1.17) 

7: Using the obtained solution one can compute the velocity potential 

and all characteristic flows. In particular, the equation of the free 

surface can be presented in the following form 

~=Ebd~9 dsin l+hIf+ ... + E2(. . .) + . . . (1.18) 

‘lhus, the parameter t is the anplitude of the wave. A number of other 
general derivations can be performed: 

a) ‘lhe frequency is a function of the amplitude: 

. um 
a, = 

f+c!@, f+J 
(1.19) 

Thus, the spectm appears to be not discrete but stepwise continuous. 

b) Periodic vibrations with an arbitrary amplitude lying inside the 

circle of convergence of series (1.18) are possible. ‘lhis appkars as one 

of the analogies between the vibrations studied and vibrations of con- 

servative systems having a finite number of degrees of freedom. 

For a more detailed analysis of the properties of free vibrations, it 

is necessary to specify the form of the container. 

In 

a) 
plane 

b) 

the particular case of cylindrical containers it can be shown that: 

It is impossible to find a time t at which the free surface is a 
surface, 

There exist no stationary nodes. 

The proof of the convergence of the proposed procedure involves a 
number of difficulties. In particular, the realization of the procedure 
is possible only when on/u, is not an integer, provided n # m. 

As a special case the solution of the problem of Sekerzh-Zen’kovich 
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[5 I, which investigates standing waves on an infinite fluid, is obtained 

from these results. His theory is equivalent to the theory of fluid vibra- 

tions in a tank having the form of a parallelepiped. 

2. Forced vibrations and resonance phenomena. 1” The problem 

of forced vibrations of a liquid under the action of a field of mass 

forces differs from the one discussed above by the fact that condition 

(1.2) is not homogeneous: 

a$ + gc + &(Vqy = u (t, 2, y) 

hsume, for the sake of simplicity, that 

li T= 5 sin ptf(s, y) 

The problem is to find periodic solutions of 

period of 2~/p. 

at z=O (2-l) 

(2.2) 

this system having a 

2: For p = 0 this problem will describe the vibrations of a certain 

conservative system; therefore, the usual quasi-linear treatment may turn 

out to be insufficient. 'lhe present system will be analysed as a system 

close to Liapunov's system, and a solution will be sought which goes over 

to the periodic solution of the problem (l.l)-(1.3) as p + 0. 

It was established above that periodic solutions of this problem, whose 

period depends on the amplitude, may formally exist. In that case the 

period T is given, and it is equal to the period of the external force 
2n/p, and consequently, the amplitude should be determined from the 

relation 

7'- 2x 
pn 

where n is an arbitrary integer. 

Using formula (1.19), equation (2.3) can be written as follows: 

d -pn 
Gh, + E%, + . . . = L!!Y--- 

pn (2.4) 

It can be seen that the proposed problem is known to have no unique 

solution; there can exist solutions of period 277/p, which may go over to 

trivial solutions as p + 0; there may also exist solutions which go over 

to the nontrivial solutions of the problem analysed in the previous para- 

graph as p + 0. 'lhis paragraph will deal only with the finding of solu- 

tions of the first type. 

3' 'lhe vibrations far away from resonance will be studied. Let 

(2.5) 
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Repeating the reasoning of the previous paragraph leads to the follow- 

ing equations on q5, and (,, respectively, at z = 0: 

g + gC, = + sin ptf (x, y), 2 + gL = 4 (cpg, Cl), . f . (2.6) 

Differentiating the first of equations (2.5) and using the first of 

equations (2.7) we get 

s + g f$ = f (5, y) cos pt (2 = 0) 

Further, let 

'PI= &l(qyJn @* 3, z), l(x, Y) = 

lhe functions fnI will satisfy the following 

fnl" + On"& = c, cospt 

Therefore, 

9% = c :e+, 2 cos pt 
% - pn 

2 %%I (5, ?!I 

system of equations 

'lhe computation of the last approximations presents no difficulties. 

4. 'Ihe solution in the vicinity of resonance will be studied. The 

solution in the form (2.8) loses its meaning when p,-+ u . In order to 

study the character of the vibrations, the "detuning' p, 2 - am2 will be 

considered small: 

p2 = 3,” + j.ka 

Iben using formula Cl.51 let 

It can be shown that for a = 0 there exist no periodic solutions of 

the problem (2.1) of the form 

: = ~t&-Wb 
1 1 

provided a and b are integers and b # 3a. Hence let 

(2.9) 

The system of equations (2.6) and (2.7) can in this case be the follow- 
wing (2 = 0): 
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lhe functions A. and B, appearing in these equations are determined by 

the formulas (z = b) 

A -__ 1- a Q$$ ( 1 - f m4a (2.11) 

A2=-$(CWta~+‘a~ -VV, C+~,+VPP),... 
at 8%) ( 

f&2= _;+%+ [$!$_ (2.12) 

B --_ 
a- 

Differentiating with respect to t the first of equations (2.9) and 
using the first of equations (2.10) yields (z = 0) 

@Fl 
-@+<z 0 --= (2.13) 

Let as before 

91 = 2 fn&l 

The following system of equations is obtained for the functions fnl: 

(n = 1,2, . . .) (2.14) 

‘Ihe unique periodic solution of the system (2.14) having a period of 

27r/‘p will be 

fnlSzO for n#m, f,nl = ICI sin pt + N cos pt (2.15) 

Here M and N are constants yet to be determined, 

Using formulas (1.6) and the first of the fomulas (2.10) we get 

91 = em (2, y, Z) (M sin yt + :V cos pt) (2.%6) 

$nkn (XT 
L=- p 

Y) 
(M cos pt - 2V sin pt) 
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Differentiate the second formula of (2.9) partially with respect to t: 

(2.17) 

Here A, and B, are computed from (2.11) and (2.12), respectively. 

After performing the calculations the result is 

a-4 at4 ---= 
at at %,fMs N)A,,(% y)sifiQt + zrz(M, WA,,@, y)cos2pt f2.18) 

Here n 
11 

In order 

Then the 

f n2 

and n12 are essentially quadratic forms of their variables. 

to determine the potential let 

following system of equations is obtained for the functions 

f,; + tpzfm2 = rllall’n) sin 2pt + ~~~a~2(n) cos 2pt (n r= 1, 2,. ~ .I (2.19) 

Inasmuch as the assumption An/h, f k', where k is an integer (if 

n f ar),hofds, the unique periodic solution of the system (2.19) with 

period (211/p) is 

and the constants MI and NI are to be determined. 

Fkpeating the sequence of computations demonstrated above,the folfow- 

ing equation for the determination of the third approximation (z = 0) is 

obtained: 

-j- cos pt {i h, 8-i (z, .Y) II&N~-~ + I(27 Y,} + 
i-o 

+ sin 2pt F, (x, y, M, N, JM,, A’,) + . . . + ~0s apt J’, (x, y, M, N, MI, iv,) 

'Ihe following expressions will be introduced 
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(P3 = 2 fk3$k? 
aij = c Qij’k’~k, bii = 2 Pijck)qk 

k k k 

Similar to the system (2.19) a system is obtained whose n-th equation 

is 

fn3” + > p2jn3 = sinpt i a. _.& y3-’ 
1.31 1 

m 
+ COS pt {i pi, 3_iMifV3-i + en} + 

i=o i=o 

+ sin 2ptrl, + cos 2ptrz, + sin 3ptr,, + 120s 3pt-f,, (2.21) 

For equation (2.21) to have 

it is necessary and sufficient 

following system of equations: 

a periodic solution of period 2n /p 
that the numbers M and N satisfy the 

3 

2 %,3-i M’lV3-+ = 0 i pi, 3_iL14iN3-i + e, = 0 (2.22) 

i=o i=O 

Thus, a system of two cubic equations determining the amplitude and 

phase of the function q5, has been arrived at. Function q$ will contain 
two constants Mi. and N1, which should be determined from the fourth 

approximation. 

3. On the 1u.A. Kravtchenko problem. Papers [ l-3 1 study experi- 

mentally and theoretically seiche type oscillations of water in ports in- 

duced by waves coming from the open sea. 

It is assumed that the port basin has the shape of a cylinder or a 

parallelepiped and is connected to the open sea by a channel. It is 

assumed that the waves, while propagating through the channel, remain in- 

tact with their parameters unchanging. It is necessary to determine the 

character of the waves appearing on the surface inside the port. ‘lhis 

problem differs from problem (l.l)-(1.3) by the fact that the condition 
(1.1) will be replaced by the following one (Fig. 2): 

Fig. 2. 
(3.1 j 

This problem can be reduced to the problem studied in Section 2. 

To accomplish this it is sufficient to let 4 = $‘1 + q&,, where qSi is 
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an arbitrary function harmonic in r, satisfying conditions (3.1). 'Ihen 

on Z the function q$, will satisfy the condition a$,/dn= 0. 

lhe condition that the pressure be constant is rewritten as follows: 

(3.2) 

where the function @ is expressed in terms of qS1 and qA2. 

The kinematic condition is 

db: 
dt= 

'lhe procedure outlined in Section 2 can be applied 

function and to determine the resonance region. 

In conclusion a few remarks will be made regarding 

encountered in the construction of a nonlinear theory 

directions further research should take. 

(3.3) 

to generate the 

the difficulties 

and the desirable 

The author performed a series of experiments for the verification of 

the theory of forced oscillations of pendulums having a cavity in the 

form of a cylinder or a parallelepiped. These experiments verified 

quantitatively the analogy with the nonlinear vibrations of mechanical 

systems having a 

in this paper. 

finite number of degrees of freedom, which is discussed 

HOwever, when 

the frequency of 

approaching from 

doing this, new cases were discovered. Let, for instance, 

the external force be p and let it steadily increase, 

the left the value o, (Fig. 3). Then, if the difference 

ul - p is not very small, the dependence of the amplitude A on the 

frequency of forced vibrations follows the curve rl fairly well. If this 

difference is small then the change of amplitude follows the curve r2. 

Fig. 3. 

If the complete analogy with the system with a finite number of degrees 

of freedom were true then the variation of A(p) should follow the dotted 

curve r3. Furthermore, this region would be unstable and the system muld 

go over to the region described by curve r4. According to the above dis- 
cussion this would already be a second mode vibration. 'Ihis fact is not 

found in the experiments. 'lhe system never went to the region I',. Already 
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for p > u1 and sufficiently close to u1 the Stokes limiting amplitude was 
reached and the waves disintegrated (for high frequency vibrations this 

disintegration occurred even sooner, when p < u1 1. lhis disintegration 

leads to an irreversible loss of energy. Therefore, in order to investi- 

gate the vibrations of real systems in regions close to resonance (for 

instance, in the theory of flutter of a wing carrying fuel tanks) it is 

necessary to create a model which would take into account the possibility 

of wave disintegration and the increase of entropy. 

Because of the complexity of the computations of the problems studied 

it is necessary to use approximate schemes which, however, still take 

into account the essentially nonlinear nature of the phenomenon. It should 

be noted that in many cases it is necessary to analyse only the first 

natural modes where the shape of the surface has a small curvature. Be- 

cause of this it is obviously expedient here to develop methods analogous 
to the variational methods of Lavrent’ev. 

In the nonlinear form this problem is almost unexplored. ‘lhe basic 

question of the existence of periodic solutions of this problem still re- 

mains open. 

BIBLIOGRAPHY 

1. YcNoun, J. S., Sur l’entretien des oscillations des eaux portuaires 

sous l’action de la haute mer. Publicationa Scicntifiqucs et Tcchni- 

ques Ministire de L’Air. Paris, 1953. 

2. Apte, A.S., Recherches theoriques et expgrimentales sur les mouve- 

ments des liquides pesants avec surface libre. Publications Scienti- 

fiquer et Techniques Yinittire de L’Air. Paris, 1955. 

3. Kravtchenko. J. and McNown, J.S., Seiche in rectangular Ports. Quart. 

Appl. Math. NO. 1, p. 19-28, 1955. 

4. Yoiseev, N. N. , Zadacha o dvizhenii tverdogo tela, soderzhashchego 

zhidkie massy, imeiushchie svobodnuiu poverkhnost’ (The problem on 

the motion of a rigid body containing fluid masses having a free 

surface). Yatcmatichcskii sbornik Vol. 32, NO. 1, 1953. 

5. Sekerzh-Zen’ kovich, Is. I., K teorii stoiachikh voln konechnoi ampli- 

tudy na poverkhnosti tiazhelnoi zhidkosti (On the theory of stand- 

ing waves of finite amplitude on the surface of a heavy liquid). 

Dokl. Akad. Nauk SSSR Vol. 58. NO. 4, 1947. 

Translated by Y.I.Y. 


